
Victor K. Ng 
Stephen Craig Pirrong 
University of Michigan 

Fundamentals and Volatility: 
Storage, Spreads, and the 
Dynamics of Metals Prices* 

I. Introduction 

What determines the volatility of asset prices? 
Most economists have traditionally argued that 
fundamental factors determine volatility. Others 
assert, however, that asset prices are driven by 
"animal spirits" and other random forces which 
induce excess volatility.1 

In this article we investigate whether funda- 
mentals determine the return variances and cor- 
relations for an important group of commodi- 
ties-the metals. To do so, we exploit the 
implications of the theory of storage. This theory 
implies that fundamental supply-and-demand 
conditions determine the spread between spot 
and forward prices. Since the spread is observ- 
able on a daily basis, it is possible to test whether 
the spread and the dynamics of metals prices are 
related in the way the theory predicts. A close 
correspondence between the predicted and ob- 
served behavior of the spreads, variances, and 
correlations of metals returns is consistent with 
the hypothesis that fundamentals determine 
price dynamics. 

The theory of storage 
implies that inventory 
and demand conditions 
affect (a) the variances 
and correlations of com- 
modity spot and for- 
ward prices and (b) the 
spread between spot 
and forward prices. 
For four industrial met- 
als and one precious 
metal over the 1986-92 
period, the observed re- 
lations between the 
spread and the vari- 
ances and correlations 
of spot and forward 
prices are consistent 
with the theory. Since 
the close connection be- 
tween spreads and real 
supply-and-demand 
conditions is well docu- 
mented, the results 
strongly suggest that 
fundamental factors de- 
termine the dynamics 
of metals prices. 

* The suggestions of an anonymous referee contributed to 
the clarity of the analysis and exposition. We are grateful to 
Kaushik Amin, James Bodurtha, and the participants at the 
National Bureau of Economic Research Summer Institute 
Workshop on Asset Pricing for their useful comments. 

1. See especially Shiller (1989) for a statement of the view 
that asset prices are excessively volatile. 
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The theory of storage implies that the interest-and-storage-adjusted 
spread (the "adjusted spread" hereafter) widens as (a) inventories fall 
relative to demand and (b) the industry marginal cost of production 
function becomes less elastic.2 These conditions make the supply 
curve less elastic. Since microeconomic theory predicts that commod- 
ity prices become more variable as the supply curve becomes less 
elastic, the volatility of spot and forward prices should increase as the 
adjusted spread widens. 

The storage theory makes other predictions about the dynamics of 
commodity prices. Specifically, supply is more elastic in the long run 
than in the short run. Therefore, the spot return volatility should ex- 
ceed the forward-return volatility when the adjusted spread is wide. 
Conversely, when supplies are abundant, the adjusted spread is nearly 
zero, and spot and forward volatilities should both be small and nearly 
equal. In addition, as inventories decline and the spread widens, a 
stock out becomes more likely. Since a stock out breaks the arbitrage 
link between spot and forward prices, the correlation between these 
prices should decline as the adjusted spread widens. 

To test these implications, we employ a bivariate dynamic model 
that allows past spreads to affect (a) the volatility of spot and forward 
returns and (b) the correlation between them. We first estimate this 
model by using data on spot and forward prices for industrial metals 
traded on the London Metal Exchange (LME) over the 1986-92 pe- 
riod. The metals studied are aluminum, copper, lead, and zinc. After 
estimating the model parameters, we determine how the spread is re- 
lated to the ratio between spot- and forward-return volatilities, the 
forward price elasticity, the variance of the spread, and hedge ratios. 

The results for the industrial metals are consistent with the predic- 
tions of the theory. The lagged-squared-adjusted spread has a statisti- 
cally significant effect on the variances of both spot and forward re- 
turns and on the correlation between these returns. Indeed, spreads are 
highly correlated with spot- and forward-return volatilities. Moreover, 
variations in lagged-squared spreads explain between 50% and 70% of 
the innovations in industrial metal spot-return variances and between 
50% and 62% of the innovations in industrial metal forward-return 
volatilities. The other attributes of industrial metal price dynamics also 
behave in accordance with the theory. This decisive empirical confir- 
mation of the implications of the theory of storage strongly supports 
the view that fundamentals drive the price dynamics of industrial 
metals. 

For contrast, we also estimate the model for a precious metal, silver. 

2. For analyses of the theory of storage and evidence relating to it, see Working 
(1948, 1949), Telser (1958), Bresnahan and Suslow (1985), Bresnahan and Spiller (1986), 
Williams (1986), and Williams and Wright (1989, 1991). 
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This metal is widely held as a store of value, rather than for industrial 
use. Therefore, the theory predicts that the adjusted spread should be 
very close to zero and that it should not vary much. This was indeed 
the case in the 1986-92 period. Moreover, the spread explains little of 
the variation in silver volatility over time. 

The findings for silver sharpen the interpretation of the very strong 
results for industrial metals. Since the theory of storage predicts 
marked differences between the behavior of silver prices and industrial 
metal prices, our documentation of such differences further bolsters 
the conclusion that fundamentals determine the behavior of metals 
prices. 

This work makes several substantive contributions to the literature. 
The most important of these is the demonstration of the strong link 
between fundamentals and industrial metal price volatility. Since the 
adjusted spread is a parsimonious summary of supply-and-demand 
conditions, and since we observe it on a daily basis, our tests of the 
relation between fundamentals and commodity price volatility are far 
more powerful than those of Anderson (1985) and Kenyon et al. (1987). 
These studies rely on crude measures of supply-and-demand condi- 
tions (e.g., seasonals), observe volatility at low frequency (monthly), 
and employ less powerful statistical techniques. Moreover, our maxi- 
mum likelihood estimators of return variances are more efficient than 
the absolute-value-of-the-return measure of daily variance employed 
by Roll (1984) in his study of the variability of orange juice futures 
prices. As a result, we estimate the relation between fundamentals 
and volatility with greater precision. Finally, our findings imply that pre- 
vious analyses that use an ad hoc bivariate generalized autoregressive 
conditional heteroscedasticity (GARCH) framework to model return 
variances (e.g., Baillie and Myers 1991) but which ignore the effect of 
the spread are misspecified and inconsistent with the theory of storage. 

This article also presents new tests of the theory of storage. Al- 
though we obviously build on the seminal article of Fama and French 
(1988), our methods offer several advantages. Specifically, we estimate 
the effect of the spread on spot- and forward-return variances and on 
the correlation between spot and futures returns. Fama and French 
examine only the variance of the basis (which is a function of these 
three parameters) and the ratio of spot- and forward-return volatilities. 
Moreover, our methodology allows us to determine the marginal effect 
of the spread on variances, correlations, and elasticities. Fama and 
French cannot do so because they compare statistics from subsamples 
in which the spread is positive to those in which the spread is negative. 
The ability to estimate volatility at each point in the sample also per- 
mits us to execute more detailed tests of Samuelson's (1965) hypothe- 
sis that spot prices should vary more than forward prices. Finally, if 
our distributional assumptions and model specification are correct, our 
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maximum likelihood approach provides more efficient estimates of the 
relevant parameters than the ordinary least squares (OLS) estimates of 
Fama and French. (We have estimated the model by using alternative 
distributions and specifications and have found that the empirical re- 
sults are robust to these changes.) 

The remainder of this article is organized as follows. The next sec- 
tion reviews the theory of storage; outlines the predicted relations 
between inventories, spreads, volatility, and correlations; and de- 
scribes our estimation and testing approach, Section III describes the 
data used to test the hypotheses and then reports and interprets the 
results. Section IV provides a brief summary of the work. 

II. Fundamentals and Price Dynamics: Inventory, the Spread, 
Volatility, and Correlation 

A. The Theory of Storage 

There are two versions of the theory of storage. Kaldor (1939) pro- 
posed the first, and better-known, version. Working (1948, 1949), 
Telser (1958), Williams (1986), and Brennan (1991) have elaborated on 
it. This theory asserts that processors and consumers of a commodity 
receive a stream of implicit benefits when they hold inventories of the 
good. This benefit is called the "convenience yield." Firms earn the 
convenience yield because stocks-on-hand allow them to respond more 
flexibly and efficiently to unexpected supply-and-demand shocks. The 
theory posits that the marginal value of convenience declines as inven- 
tory increases. Empirical evidence produced by Working (1948, 1949), 
Telser (1958), and Brennan (1991) is consistent with this prediction. 
This evidence also suggests that the convenience yield is a convex 
function of stocks. The top panel of figure 1 depicts the convenience- 
yield function. 

Arbitrage ensures that the convenience yield affects the relation be- 
tween spot and forward prices. Since holders of stocks earn the conve- 
nience yield but owners of forward contracts do not, a positive conve- 
nience yield depresses the forward price relative to the spot price. 
This effect of the convenience yield on the futures price is analogous 
to the effect of a dividend yield on the price of a stock-index futures 
contract. Formally, let F, be the forward (or futures) price at time 
for delivery of a commodity at time T > t, and call St the spot price 
of the commodity at t. Moreover, let Wt,T equal the cost of physically 
storing a unit of the commodity from t to T, and define rt,T as the yield 
at t on a discount bond that matures at T. Finally, assume that the 
convenience yield equals Ct,T. Then, it is well known that the no- 
arbitrage relation between the spot and forward prices is 

Ft - Wt, T = Ste(rt,T-Ct,T)(T-t). (1) 
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FIG. 1.-The relation between inventories, the convenience yield, and the 
interest and storage cost adjusted spread between forward and spot prices. 

Thus, a rise in the convenience yield causes the forward price to de- 
cline relative to the spot price. It is also evident that Ct T 2 0. If 
not, speculators could earn an arbitrage profit by shorting a forward 
contract, buying the commodity, and storing it until expiration of the 
forward contract. 

The relation between spot and forward prices is frequently ex- 
pressed in terms of the interest and storage adjusted spread. This is 
defined as 

ln(Ft - wt, T) - ln St r (2) 
T -t rt,T= C t,TO (2 

The adjusted spread equals the annualized percentage difference be- 
tween the forward and spot prices at t, net of storage and interest costs 
incurred to hold inventory from t to T. Given the behavior of the 
convenience yield; zt varies directly with inventories. That is, zt be- 
comes more negative as inventories decline. Moreover, since Ct,T iS 
a convex function of stocks, zt is concave. The bottom panel of figure 
1 illustrates this relation. 

The second version of the theory of storage does not rely on the 
construct of a convenience yield but produces identical implications 
for the relation between zt and inventories. The articles of Bresnahan 
and Spiller (1986), Williams and Wright (1989, 1991), and Deaton and 
Laroque (1991) imply that zt is an increasing, concave function of 
inventory even when processors and marketers receive no implicit 
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benefit from holding inventories. This is true because the probability 
of stock out prior to the expiration of the forward contract varies 
inversely with inventories. Spot prices exceed forward prices (ad- 
justing for carrying costs) when a stock out occurs, because under 
these circumstances it is impossible to undertake intertemporal arbi- 
trage transactions; arbitrageurs cannot augment current consumption 
with future production. Instead, the spot price rises as high as is neces- 
sary to equilibrate supply and demand in the spot market. Thus, when 
stocks decrease, the probability of a stock out increases, and zt de- 
clines.3 This alternative theory of storage therefore implies that inter- 
temporal consumption optimization and a nonnegativity constraint on 
storage, rather than an explicit convenience yield, explain the relation 
between spot-forward spreads and inventories. 

Which of the two versions of the theory of storage is more plausible 
is irrelevant to the present study, because the models are observation- 
ally equivalent for our purposes. The conclusions that we discuss be- 
low hold as long as there is an increasing, concave relation between 
zt and. stocks, regardless of the structural relation that produces this 
reduced form. 

B. Testable Implications of the Theory of Storage 

French (1986), Fama and French (1987, 1988), and Williams and Wright 
(1991) derive the implications of a concave, increasing relation be- 

3. Keynes (1930) first noted the linkage between negative spreads ("backwardation") 
and stock outs. It may be argued that, for commodities such as metals (or grains or 
petroleum products), a stock out is an unlikely event, and this version of the theory is 
therefore unrealistic. It is indeed the case that it is extremely unlikely that worldwide 
(or even U.S.) stocks of a commodity would ever be exhausted. However, Williams 
and Wright (1989, 1991) demonstrate that the spot-forward spread is determined, not by 
worldwide or national stocks, but by the inventories at the delivery point for the spot 
and forward contracts. It is quite possible for stocks to be consumed completely at a 
single point (such as the delivery point) even when there are inventories at other loca- 
tions. Moreover, Bresnahan and Spiller (1986) prove that stock outs at a particular 
location must occur with positive probability in a no-bubbles economy. This is an intu- 
itive result. If a stock out at a particular point were a zero-probability event, then some 
of the inventory would never be consumed. This is wasteful. Thus, optimality requires 
that stock outs occur with positive probability. There is some empirical evidence that 
is consistent with this theory. Using data from the Australian wheat trade, Brennan, 
Wright, and Williams (1992) provide an empirical example of a situation where (a) the 
adjusted spread is negative in a central market, (b) stock outs occur in the central 
market, and (c) inventories outside the central market are always positive. This situation 
occurs because the costs of transporting more wheat from outlying areas to the central 
market immediately are higher than the expected costs of shipping it in the future. This 
makes it economic to delay shipping the wheat, even though the present value of the 
price for deferred delivery is lower than the price for immediate delivery. As a result, 
no wheat is stored in the central market despite the backwardation. Deaton and Laroque 
(1991) demonstrate that certain attributes of commodity prices behave as the stock-out 
model predicts. Specifically, actual and stimulated prices exhibit autocorrelation with 
occasional price spikes. It is also worth noting that rigorous formal models of the stock- 
out version of the theory have been derived. In contrast, derivations of the more familiar 
convenience-yield theory are primarily intuitive and informal. 
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tween adjusted spreads and inventories for spot- and forward-return 
volatilities, the ratio of these volatilities, and the correlation between 
spot and forward returns. There are three primary implications; three 
other implications follow immediately. 

IMPLICATION 1. If current and permanent shocks predominate,4 the 
variances of spot and forward returns vary inversely with zt1 .5 That 
is, spot and forward returns are more volatile, the wider the adjusted 
spread. 

The reasoning behind this result is as follows. A decline in stocks has 
two effects. First, it causes z,1 to decrease. Second, supply conditions 
become more constrained. This reduces the elasticity of supply. Since, 
for a given distribution of demand shocks, prices are more variable 
when supply is less elastic, this second effect causes spot and forward 
prices to become more volatile. Thus, there is a negative relation be- 
tween z, I and the variance of spot and forward returns.6 Figure 2 
illustrates this prediction. 

This implication speaks directly to the issue of the importance of 
fundamentals in determining spot- and forward-return variances. Since 
z,1 summarizes real supply-and-demand conditions, an empirical 
demonstration that movements of this variable explain a large fraction 
of the movements in return variances is consistent with the hypothesis 
that fundamentals primarily determine volatility. 

IMPLICATION 2. If current and permanent supply-and-demand 
shocks predominate, then (a) when zt-I = 0, the variance of a com- 
modity's spot return equals the variance of its forward return, and 
(b) as z,1 decreases, the variance of the spot return increases relative 
to the variance of the forward return. Thus, the ratio of the forward- 
return variance to the spot-return variance decreases as the spread 
widens.7 

To see the basis for this result, consider the effect of a positive 
current or permanent demand shock. Such a shock causes the spot 

4. Current shocks affect demand and supply at t only; permanent ones affect demand 
at both t and T in the same fashion. 

5. Note that (a) A ln St = ln St - ln St-,1 and (b) zt-I are related to inventory 
conditions immediately prior to the shock that generates the return at t, whereas zt 
includes the effects of the shock. Thus, variations in zt-I measure variations in initial 
supply-and-demand conditions. Put another way, zt_ I is in the relevant information set, 
whereas zt is not. 

6. It should also be noted that a decrease in the elasticity of the marginal cost of 
production curve similarly affects the elasticity of the supply curve and therefore leads 
to an increase in price volatility. Williams and Wright (1991, pp. 131-35) demonstrate, 
moreover, that such a change in the elasticity of the marginal cost of production causes 
the spread to widen. Ceteris paribus, an increase in demand has the same effect. In 
order to simplify the exposition, we focus our attention on how changes in inventories 
affect the spread and volatility; it is a straightforward exercise to generalize our implica- 
tions to encompass cost elasticity and demand changes. 

7. Samuelson's (1965) theory also predicts that spot volatility should exceed forward 
volatility. 
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FIG. 2.-The relation between spot- and forward-return volatilities and the 
interest and storage cost adjusted spread between forward and spot prices. 
The axis labeled "hs(t)" measures the spot-return conditional volatility at time 
t (given all information available at time t - 1). The axis labeled "hf(t)" 
measures the forward-return volatility at time t. The axis labeled "z(t - 1)" 
measures the interest and storage cost adjusted spread at time t - 1. The axis 
labeled "Inventory(t - 1)" measures the level of inventory at t - 1. 

price to rise and inventories to fall. Because of the convexity of the 
convenience-yield function, the decline in inventories has virtually no 
effect on the convenience yield when stocks are large. Thus, equation 
(1) implies that the spot and forward prices move by nearly equal 
amounts in response to the shock. 

Now consider the effect of the demand shock when stocks are small. 
In this case, the shock again causes the spot price to rise and invento- 
ries to decline. Since the convenience yield is a convex function of 
inventories, a decline in inventories causes this yield to increase sub- 
stantially when stocks are small. In these circumstances, equation (1) 
implies that the forward price moves less than the spot price in re- 
sponse to the demand shock. Thus, the spot return is more volatile 
than the forward return when stocks are small, whereas these returns 
are equally volatile when inventories are large. Figure 2 depicts this 
relation. 

It is also possible to derive this result from the stock-out version of 
the theory. When stocks are low, spot prices must change dramatically 
in response to supply-and-demand shocks because inventories and pro- 
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duction cannot adjust immediately to accommodate them. Over a long 
time horizon, however, agents can adjust real variables in response to 
a shock. Therefore, a smaller forward-price response equilibrates the 
market for future delivery. Thus, when the adjusted spread is wide, 
the spot volatility exceeds the forward volatility. Conversely, when 
the adjusted spread is close to zero, a stock out is a very remote 
possibility. As a result, speculators will almost always be able to exe- 
cute cash-and-carry arbitrage transactions which ensure that the for- 
ward price exceeds the spot price by the cost-of-carry. This guarantees 
that when the spread is nearly zero, the spot and forward prices move 
in equal amounts when a shock occurs.8 

IMPLICATION 3. The correlation between spot and forward returns 
equals one when zt1 = 0. As zt1 decreases from zero, this correlation 
declines. 

This implication is most easily derived from the stock-out version 
of the theory of storage. As just noted, when stocks are large and thus 
z, = 0, spot and forward prices move in lockstep in response to 
supply-and-demand shocks. In this case, spot and forward returns are 
nearly perfectly correlated. 

As stocks decline, the probability of a stock out increases. If some 
shocks are temporary, spot prices can move independently of forward 
prices during a stock out. This occurs because agents cannot undertake 
the cash-and-carry arbitrage transactions that normally link them. 
Therefore, when the spread is wide, the spot and forward prices are 
imperfectly correlated because there is an appreciable probability that 
these prices will move independently in the near future. As a result, 
the spot-forward return correlation should decline systematically as 
the spread widens. Figure 3 illustrates this relation. 

These primary predictions of the theory of storage lead directly to 
three further implications. 

IMPLICATION 4. Define the change in the log difference between 
forward and spot prices as V, A(ln F, - ln St). The variance of V, 
equals zero when zt1 = 0. Moreover, the volatility of Vt is decreasing 
in z,-l. 

When the spread is zero, the variances of spot and forward returns 
are equal, and these returns are perfectly correlated. This implies that 
the variance of V, equals zero when zt- 1 = 0. When the spread widens, 
the variances of spot and forward returns increase, the spot-return 
variance increases more than the forward-return variance, and the cor- 
relation between the returns declines. Together, these effects imply 
that the variance of the forward-spot relative price increases as zt- 
declines. Figure 4 illustrates this pattern. 

8. This long-run adjustment process should also cause the spread to be mean re- 
verting. 
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FIG. 3.-The relation between the spot-forward return correlation and the 
interest and storage cost adjusted spread between the forward and spot prices. 
The axis labeled "Correlation(t)" measures the conditional correlation be- 
tween forward and spot returns at time t (given all information available at 
time t - 1). The axis labeled "z(t - 1)" measures the interest and storage 
cost adjusted spread at time t - 1. The axis labeled "Inventory(t - 1)" 
measures the level of inventory at t - 1. 

IMPLICATION 5. Define the elasticity of the forward price with re- 
spect to the spot price as et = A In FtIA In St. If the forward price 
equals the expected spot price,9 then et = 1 when zt-I - 0. This 
elasticity is increasing in zt- That is, the elasticity falls below one as 
the spread widens. 

French (1986) proves this result formally. The intuition behind it is 
similar to that underlying implication 2. When stocks are large, the 
spot and forward prices move by nearly the same amount in response 
to a demand or supply shock. When stocks are small, these prices 
tend to move in the same direction, but the spot price moves more 
than the forward price in response to a given permanent or current 
shock. 

9. This is strictly true only if all agents are risk neutral, or under the equivalent 
martingale measure. 
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FIG. 4.-The relation between the variance of the change in the basis and 
the interest and storage cost adjusted spread between the forward and spot 
prices. The axis labeled "hv(t)" measures the conditional volatility of the 
change in the adjusted basis at time t. The axis labeled "z(t - 1)" measures 
the interest and storage cost adjusted spread at time t - 1. The axis labeled 
"Inventory(t - 1)" measures the level of inventory at t - 1. 

IMPLICATION 6. The spot-forward hedge ratio should vary with the 
adjusted spread. 

The number of forward contracts to short to hedge a spot position 
depends on the variances and covariance of the spot and forward re- 
turns. Since these depend on the adjusted spread, hedge ratios should 
depend on it as well. 

To summarize, the theory of storage implies that fundamental sup- 
ply-and-demand conditions should systematically affect the dynamics 
of commodity prices. Moreover, since it is extremely well documented 
empirically that these fundamental factors determine the spot-forward 
spread, this variable is an excellent proxy for these factors.10 Empirical 
confirmation of these implications concerning the relation between the 
adjusted spread and the full array of commodity price dynamics would 
thus provide strong evidence that fundamental conditions are the pri- 
mary determinants of these dynamics. 

10. Examples of empirical tests of the relation between inventories and spreads in- 
clude Working (1948, 1949), Howell (1956), Telser (1958), Weymar (1974), Gray and 
Peck (1981), Thompson (1986), Williams (1986), Pindyck (1990), and Brennan (1991). 
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C. Model Specification 

We test these six predictions empirically by using an error-correction 
model with time-varying means, variances, and covariances. The con- 
ditional means of the spot and futures returns are specified as 

5 5 

Aln St =a + E i,sA In St- + yi,sA lnFt_ + pszt- i + Et (3) 
i=1 i=l 

and 
5 5 

AlnF = f+3i fA ln St-i + 3Yi,fA ln Ft-i + pFfzt-I + t (4) 
i=l i-l 

where the a's, p's, y's, and p,'s are parameters and Et and -t are 
random-error terms. The inclusion of the lagged-adjusted spread terms 
reflects the fact that spot and forward prices should obey a long-term 
equilibrium relationship. Therefore, when spot and forward prices di- 
verge widely, agents should reduce current consumption and increase 
production in order to drive them back together again. That is, the 
spot and forward prices should be cointegrated. 

The conditional variances and covariances of the spot and futures 
returns are specified as an augmented bivariate GARCH model. For- 
mally, the equations for the conditional variance of the spot return, 
hs,t, and the conditional variance of the forward return, hft, are as 
follows: 

h5t = + 1lhsit+1 + 2E 3Z21, (5) 

and 

hf,t= (of + lf,tItl 2_+ 3Z2 (6) 

The inclusion of the z2_1 terms allows the adjusted spread to affect 
volatility. We use z2_ 1 instead of zt- 1 or I Zt- in the empirical work 
because it produces uniformly superior results. The log likelihood is 
always largest for the squared spread specification, although the quali- 
tative results are very similar regardless of which spread variable is 
employed. This contrasting performance is of some interest, as it im- 
plies that widening the spread increases volatility at an increasing rate. 

The theory discussed in Section IIB implies 83 > +3 > 0. The first 
inequality reflects the prediction that current supply conditions have 
a more pronounced effect on spot volatility than forward volatility. 
The second inequality formalizes the prediction that prices are more 
volatile when inventories are low and the spread is wide, and hence 
when z2_1 is large. The lagged variance and lagged-squared-error terms 
reflect the possibility that other factors may introduce time-varying 
elements into volatility. For example, the theories of Kyle (1985), 
Black (1986), and Ross (1989) imply that informed trading increases 
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volatility and that informed individuals exploit their advantage by 
spreading out their trading over time. If information flows vary over 
time, therefore, volatility varies as well, and volatility shocks should 
persist. Alternatively, erratic speculative trading can also induce time- 
varying volatility. 

The conditional covariance of the spot and forward returns is speci- 
fied by using a variant of the model of Kroner and Sultan (1991). In 
order to capture the relation between spreads and the covariance, we 
assume the following functional form: 

crs,f,t = P\/hs7tift + z01, (7) 

where 0s,ft is the covariance between spot and forward returns. The 
parameter p is the correlation between spot and forward returns when 
zt-I = 0. Theory predicts p =1 because spot and forward returns are 
nearly perfectly correlated when the market is at full carry (i.e., when 
zt-I = 0). The parameter 0 captures the effect of the lagged-adjusted 
spread on the covariance. Since the correlation between spot and for- 
ward returns should decline as the lagged-adjusted spread widens, the 
theory predicts 0 < 0. 

This model of the covariance captures important relations between 
spot and forward price correlations and the spread. These relations 
are predicted by theory and have been ignored heretofore. For in- 
stance, the bivariate GARCH specification employed in the work of 
Baillie and Myers (1991) is misspecified if spot-forward correlations 
depend on supply conditions, and hence on the spread. 

We estimate equations (3) and (4) by using OLS to obtain et and mt. 
We then estimate equations (5)-(7) as a system by using the method 
of maximum likelihood, when it is assumed that 

( lIt-i Student-t((0) (2:;t Csft) '0f) (8) 

where 0s,f is the inverse of the number of the degrees of freedom of 
the t-distribution, and It_ is the information set as of t - 1. Equation 
(8) states that distribution of the spot and forward returns at t condi- 
tional on information available at t - 1 is a bivariate Student-t with 
10s,f degrees of freedom. The use of the bivariate conditional t- 
distribution (where the number of degrees of freedom is estimated), as 
opposed to the normal, is intended to capture the fat tails of the joint 
distribution of the returns. Since the t-distribution contains the normal 
as a limiting case, it is more general than the bivariate normal distribu- 
tion typically used in other studies of this nature.1" 

11. Autoregressive conditional heteroscedasticity is frequently advanced as an expla- 
nation for the kurtosis observed in many return series. It is not necessarily the case, 
however, that the conditional distribution of the returns is normal. As a result, there 
may be two sources of excess unconditional kurtosis: time-varying volatility and excess 
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Two considerations justify this two-step procedure and the use of 
OLS to estimate equations (3) and (4). First, since the information 
matrix of the general error-correction model with time-varying volatil- 
ity is block diagonal with respect to the mean and variance equation 
parameters, the separate execution of the two steps does not reduce 
the efficiency of the variance estimates. Second, since the explanatory 
variables in equations (3) and (4) are identical, the estimated coeffi- 
cients (and hence the residuals) are the same regardless of whether 
the equations are estimated singly or jointly. We employ a two-step 
procedure instead of a full maximum likelihood estimation of both 
mean and variance equations because of the large number of parame- 
ters involved, which makes convergence problematic. Furthermore, 
we are primarily interested in the dynamics of the variances and co- 
variances. 

Given our estimates of h5 t, hft, and as,f,t, we determine the time- 
series behavior of the variance of Vt and its relation to the behavior 
of the adjusted spread. Denoting the variance of Vt by hV,t, we use the 
estimates of variances and the covariance and the relation 

hV,t hs,t +hf,t - 2us,f,t (9) 

to calculate the variance of the change in the forward-spot log dif- 
ference. 

We also use the parameter estimates to calculate the forward price 
elasticity, et. Assume that at t, the relation between the spot and for- 
ward returns is 

AlnFt = b(t)AlnSt + vt, 

where vt is a random-error term. Then, et = b(t) = orS,f,tIhS,t. This 
method of calculating the elasticity has two advantages over that of 
Fama and French (1988), who regress the contemporaneous forward 
return against the contemporaneous spot return in subsamples in 
which the interest adjusted spread is positive and subsamples in which 
it is negative. First, correlations between the error term and the inde- 
pendent variable may bias coefficients in a regression of one endoge- 
nous variable on another. Second, this approach allows us to calculate 

kurtosis in the conditional distribution of the error term. Hence, the conditional t- 
distribution is more general. Moreover, the large t-statistics for the inverse of the degree- 
of-freedom parameter in our results imply that the coefficient is estimated with consider- 
able precision and that conditional returns exhibit appreciable kurtosis. In order to 
determine whether our results are sensitive to the more general distribution, we have 
also estimated the model by using a conditional bivariate normal distribution and have 
computed robust t-statistics by using the method of Bollerslev and Wooldridge (in press). 
The results are virtually identical to those we report, with the exception that the t- 
distribution outperforms the normal distribution (as measured by the value of the log 
likelihood). 
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the marginal effect of changes in z2_I on et over its entire observed 
range. 

Finally, the estimated conditional variances and covariances deter- 
mine optimal hedge ratios. The instantaneous variance-minimizing 
hedge ratio is the number of forward contracts to sell per unit of the 
spot commodity in order to minimize the variance of the combined 
position over the next day. It is well known that this ratio equals 
cs,f, tlhf,t tH. From equations (6) and (7) it follows that 

H=p Sjj-+ ht 

III. Empirical Evidence 

A. Data 

To test the hypotheses concerning the joint dynamics of futures and 
spot prices discussed in the previous section, we employ data on spot 
and 3-month forward prices for copper, lead, silver, and zinc from the 
London Metal Exchange for the period from September 1, 1986, to 
September 15, 1992, and for aluminum prices for the period from Au- 
gust 27, 1987, to September 15, 1992. As Fama and French (1988) note, 
these data have desirable properties. Specifically, both the spot and 
forward prices are determined nearly simultaneously in ring trading, 
that is, in an open-outcry mechanism. Moreover, there are no limit 
prices at the LME, so observed prices are market clearing prices. For 
these reasons, unlike spot prices for other commodities, the spot prices 
for metals are reliable transactions prices. Finally, unlike agricultural 
products, metals production is nonseasonal, and therefore the assump- 
tions utilized above that current or permanent shocks predominate are 
plausible. It should also be noted that T - t (i.e., the time to expira- 
tion) is a constant throughout this sample, as the 3-month forward 
contract traded on any day t becomes "prompt" (i.e., delivery occurs) 
on day t + 90. 

There are two open-outcry "rings" each day; each metal trades in 
the ring twice in each session. For each trading day and for each of 
the five metals, we collect the second-session, second-ring closing spot 
and forward prices. We use these prices to calculate close-to-close 
spot and forward returns. 

We also use these prices to calculate ln Ft and ln St. Then, using 
equation (2), we adjust this difference by the relevant short-term inter- 
est rate and the cost of storage to calculate zt. Copper and lead trade 
in pounds sterling, whereas aluminum, zinc, and silver are quoted in 
dollars. We therefore use the Eurosterling rate to calculate financing 
costs for the first two commodities, and we-use the Eurodollar rate 
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to do so for the latter three (after converting each to a continuously 
compounded equivalent rate). The London Metal Exchange, Ltd., 
kindly provided weekly warehousing fees for the four industrial met- 
als-aluminum, copper, lead, and zinc. Since delivery can occur in 38 
warehouses in 12 countries in Asia, Europe, and North America, and 
since different warehouses charge different storage fees, there is no 
unique value of wt, T. We use the median value of the warehousing fee 
(multiplied by 13 in order to determine the cost of storage over the 
relevant 3-month period) as our estimate of storage costs. We obtained 
silver storage charges from several warehousing firms in the United 
States and the United Kingdom. After adjusting for the time value of 
money and storage fees, the zt's for all days and all metals are negative. 
Thus, there were no apparent cash-and-carry arbitrage opportunities.'2 

B. Exploratory Data Analysis 

An exploratory analysis of the data supports the hypotheses advanced 
in Section II. Table 1 reports the autocorrelation coefficients for A ln St, 
A ln Ft, (A ln St)2, (A ln Ft)2, and (A ln St)(A ln FP); the squared returns 
at t are measures of the variances of spot and forward returns at t, 
and the cross product of spot and forward returns is a measure of their 
covariance. Although the autocorrelations provide only weak evidence 
of a time-varying mean, there is strong evidence of time-varying vola- 
tility; the autocorrelations of both (A ln St)2 and (A ln Ft)2 are positive 
and significant. 

Table 2 presents the summary statistics for returns, squared returns, 
the product of spot and forward returns, and the adjusted spread. Note 
that the forward return variance is consistently smaller than the spot 
return variance for the industrial metals; this difference is significant 

12. Fama and French (1988) do not adjust for storage costs. Thus, they sometimes 
find z t> 0. 

TABLE 1 Metals Autocorrelations 

Lag A1 n St (A1 n St)2 A1 n Ft (A1 n Ft)2 A1 n FtA In St 

Aluminum: 
1 .11* .33* .06* .21* .24* 
2 .01 .10* .04 .12* .05* 
3 .03 .19* - .04 .16* .11* 
4 - .01 .17* .01 .14* .09* 
5 .07* .12* - .01 .09* .01* 
6 - .04 .24* .00 .13* .09* 
7 - .04 .20* .02 .14* .14* 
8 .03 .15* -.04 .09* .09* 
9 .02 .18* .07* .11* .12* 
10 .00 .19* - .01 .18* .18* 
Q(12) 30.45* 516.00* 22.87* 288.48* 210.64* 



TABLE 1 (Continued) 

Lag A 1n S, (A 1n S,)2 A 1n Ft (A 1n Ft)2 A 1n FtA 1n S 

Copper: 
1 .01 .28* .00 .25* .26* 
2 - .01 .18* - .07* .09* .12* 
3 .02 .19* - .01 .12* .15* 
4 - .08* .18* .10* .14* .14* 
5 .07* .15* .07* .08* .10* 
6 - .08* .15* - .04 .09* .11* 
7 - .03 .15* - .03 .13* .15* 
8 - .01 .16* .02 .12* .12* 
9 .00 .13* .02 .08* .10* 
10 - .02 .13* - .00 .09* .10* 
Q(12) 46.19* 558.80* 40.75* 320.67* 390.42* 

Lead: 
1 .02 .19* - .05* .09* .11* 
2 -.03 .13* - .06* .06* .06* 
3 -.06* .20* - .06* .13* .14* 
4 .00 .10* .03 .07* .14* 
5 .06* .13* .05 .05 .05 
6 .02 .16* - .03 .10* .05 
7 .03 .19* .00 .10* .11* 
8 .04 .13* .07* .07* .10* 
9 .04 .15* .03 .02 .05 
10 .04 .14* .01 .07* .03 
Q(12) 29.93* 392.45* 34.56* 102.48* 117.18* 

Zinc: 
1 .10* .28* .01 .19* .14* 
2 - .06* .07* - .01 .06* .07* 
3 -.03 .03 -.03 .05 .03 
4 .01 .08* .03 .05 .09* 
5 .04 .09* .04 .09* .07* 
6 -.01 .13* -.01 .04 .04 
7 - .01 .06* - .03 .06* .12* 
8 .01 .08* .03 .13* .07* 
9 .08* .05 .09* .06* .17* 
10 .00 .04 .04 .08* .17* 
Q(12) 38.22* 201.25* 24.37* 149.55* 113.59* 

Silver: 
1 - .03 .09* - .02 .09* .09* 
2 .00 .16* .00 .17* .16* 
3 - .06 .14* - .06* .13* .14* 
4 .02 .03* .01 .03 .03 
5 -.03 .10 -.02 .09 .09* 
6 .01 .01 .00 .01 .01 
7 -.01 .01 .00 .02 .01 
8 -.03 .02 - .03 .02 .02 
9 -.02 .03 -.02 .03 .03 
10 .01 .01 - .01 .01 .01 
Q(12) 12.96 100.88* 11.75 98.84* 99.91* 

NOTE.-This table reports the autocorrelation coefficients for daily spot and forward returns, 
squared daily spot and forward returns, and the product of daily spot and forward returns, for each 
of the five metals in our sample. The spot return equals A In S,, and the forward return equals A ln 
F,. The sample period is from September 1 to September 15, 1992, for copper, lead, silver, and zinc. 
Sample size equals 1,522 for these four metals. The sample period is from August 27, 1987, to 
September 15, 1992, for aluminum. Sample size equals 1,272 for this metal. The standard error for 
each coefficient for each metal equals .03. The row labeled "Q(12)" reports that Ljung-Box statistic 
for twelfth-order serial correlation, which is distributed x2, with 21 degrees of freedom. The critical 
value at the 5% level equals 21. 

* Coefficients are significant at the 5% level. The Q(12) statistics are significant at the 5% level. 
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TABLE 2 Summary Statistics 

Metal 

AL CU PB ZN AG 

VAR(A InS,) 4.19E - 4 3.59E - 4 3.58E - 4 2.89E - 4 2.65E - 4 
VAR[(AInSt)2] 1.66E - 6 6.89E - 7 7.18E - 7 5.66E - 7 2.88E - 6 
VAR(A In F,) 2.25E - 4 2.21E - 4 1.98E - 4 1.77E - 4 2.65E - 4 
VAR[(A In F,)2] 3.15E - 7 3.16E - 7 2.28E - 7 1.80E - 7 2.72E - 6 
VAR[(A In F,A In S,)] 5.41E - 7 3.82E - 7 3.15E - 7 1.84E - 7 2.65E - 6 
Kurtosis(A In S,) 8.85 4.29 5.94 5.07 7.21 
Kurtosis(A In F,) 9.99 8.58 6.95 5.31 7.19 
MEAN(z,) - .0425 - .0551 - .0554 - .0484 - .0011 
VAR(z,) .0316 .00198 .00240 .00101 1.50E - 5 

NOTE.-This table reports the summary statistics for spot and forward returns, squared spot and 
forward returns, and the product of spot and forward returns and the adjusted spread. MEAN(X) 
gives the sample mean of variable X. VAR(X) gives the sample variance of variable X. Kurtosis(X) 
is the coefficient of kurtosis of variable X. The spot return is A ln S,, whereas the forward return is 
A ln F,. The adjusted spread is z,. AL, CU, PB, ZN, and AG are abbreviations for aluminum, 
copper, lead, zinc, and silver, respectively. The sample period (number of observations) is from 
August 27, 1987, to September 15, 1992 (1,272) for AL and from September 1, 1986, to September 
15, 1992 (1,522) for the other metals. 

at the 1% level for each metal. Conversely, spot and forward return 
variances are identical (to the fourth significant digit) for silver. Unsur- 
prisingly, (a) the absolute value of the average adjusted spread and 
(b) the variance of the adjusted spread are both much larger for the 
industrial metals than for silver. This is consistent with the hypotheses 
that (a) investors/speculators hold the marginal inventories of silver 
as a store of value, so these inventories generate no convenience value 
and/or the stock-out probability is nil, and (b) industrial metal invento- 
ries generate a convenience yield and/or stock-out probabilities are 
appreciable for these commodities. Finally, note the significant kurto- 
sis in the returns. This highlights the potential advantages of using the 
conditional t-distribution in our analysis. 

Table 3 reports the correlations between squared spot and forward 
returns and z2_ 1, the correlation between the product of spot and for- 
ward returns and z2_1, and the partial correlation (holding lagged- 
squared spot and forward returns constant) between this product and 
z2 1_. First, consider the results for the four industrial metals 
aluminum, copper, lead, and zinc. For these commodities, the lagged- 
squared-adjusted spread is positively correlated with both spot and 
forward squared returns, which is consistent with the hypothesis that 
returns are more variable when the spread is wide. Moreover, z _1 is 
more strongly correlated with the squared spot return than with the 
squared forward return. This supports the conjecture that current sup- 
ply conditions have a more pronounced effect on spot than forward 
volatilities. Finally, the partial correlation between the lagged-squared- 
adjusted spread and the product of spot and forward returns is strongly 
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TABLE 3 Spread-squared Return Correlations 

Metal 

AL CU PB ZN AG 

CORR[(A In St)2, Z2_1] .332 .356 .342 .351 -.094 
CORR[(A In Ft)2, Z2_1] .2047 .207 .246 .097 -.093 
CORR(A In FtA In St, Z2_1) .2039 .236 .248 .128 -.093 
PCORR(A In FtA In S,, 2_1) - .335 -.246 -.252 -.310 .08 

NOTE.-This table reports the correlations between squared daily returns and the squared spread, 
as well as the correlation and partial correlation between the product of daily spot and forward 
returns and the lagged-squared-adjusted spread. The variable A ln S, is the spot return, A ln F, is 
the forward return, and z 2_ is the lagged-squared-adjusted spread. CORR(X, Y) reports the correla- 
tion between variables X and Y. PCORR(A ln F,A ln S,, z21) reports the partial correlation between 
the product of spot and forward returns and the lagged-squared adjusted spread, when lagged-squared 
spot and squared futures returns are held constant. The sample period (number of observations) is 
from August 27, 1987, to September 15, 1992 (1,272) for AL, and from September 1, 1986, to 
September 15, 1992 (1,522) for the other metals. Metals are abbreviated as in table 2. 

negative. This supports the prediction that the correlation between 
spot and forward returns declines ,s the spread widens. 

Next, consider the results for gilver. The correlations between the 
lagged-adjusted-squared spread and the squared spot return, squared 
forward return, and the product of spot and forward returns are nega- 
tive and small in absolute value. Moreover, the correlation between 
the spot return and the squared spread and the correlation between 
the forward return and the squared spread are nearly equal. Also, the 
partial correlation between the lagged-squared-adjusted spread and the 
product of the spot and forward returns (holding the lagged-squared 
spot and forward returns constant) is small and positive. Thus, the 
relation between the adjusted spread and spot and forward returns for 
silver differs dramatically from that observed for the industrial metals. 
The inability of the spread to explain the variances and covariances of 
silver returns is unsurprising. The spread varies little (as is seen in 
table 2) and cannot explain changes in silver spot and forward return 
volatility over time. This reflects the fact that speculators/investors 
hold large buffer stocks of precious metals. 

Finally, we cannot reject the hypotheses that (a) spot and forward 
prices have a unit root and that (b) zt is stationary. The t-statistics on 
the relevant coefficient in five lag-augmented Dickey-Fuller regres- 
sions for the spot and forward returns range between - .98 and -1.47. 
This is not significant at the 5% level in samples over 500, indicating 
that the spot and forward prices are nonstationary. Moreover, the 
augmented Dickey-Fuller statistic for zt equals approximately -3.5 
for all the metals. This is significant at the 5% level, which indicates 
that the interest and storage adjusted spread is mean reverting, as 
theory suggests. 
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C. Results and Interpretation: Industrial Metals 

Table 4 reports the results from the estimation of equations (5)-(8).13 
Most importantly, the values of 83 and +3 are positive and significant. 
This is consistent with the theory of storage, as it implies that spot 
and forward prices are more volatile, the greater the adjusted spread 
(in absolute value); that is, these prices are more volatile, the lower 
the level of inventories. Furthermore, for all the metals, 83 > +3. 
As expected, therefore, variations in adjusted spreads induce greater 
changes in spot return variances than forward return variances. This 
reflects the greater elasticity of long-run supply curves. 

Changes in zt2 1 explain a large portion of the innovations-shocks 
in spot- and forward-return volatilities. There are two sources of inno- 
vations to volatility in equations (6) and (7), the lagged-squared spread 
and lagged-squared residual returns.14 To measure the fraction of the 
innovations in volatility attributable to each source, define 

9,(Zt-1) = 83Zt2-19 

q,(A ln St- 1) = 82Et-1, 

xs(zt I1, A ln St- 1) = t ) +(l-) 
g(zt- ) + qs~(A In St )'9 

gf(Zt-1) = +3 t-1, 

qf(A InFt_1) = 42 t-19 

and 

Xf(zt- 1 A t1 gF(zt 1) + qf ( lnF 

In words, xs(, ) and Xf(, *) measure the proportion of spot and 
forward return volatility innovations, respectively, at t, attributable to 
variations in the interest and storage adjusted spread at t. - 1. The 
values of xs (-, ) and Xf (, *) in these samples are typically large. The 
average value of xs(, 9) equals .62 for aluminum, .57 for copper, .69 
for lead, and .65 for zinc. The average value of Xf(- *) equals .56 for 
aluminum, .53 for copper, .59 for lead, and .57 for zinc. Therefore, 
variations in spreads explain a large fraction of the innovations in both 

13. Since our emphasis is on variances and covariances, we do not report the esti- 
mates from eqq. (4) and (5). Unsurprisingly, the adjusted R2s for these regressions are 
quite low, ranging between .011 and .034. Moreover, no coefficients are statistically 
significant (when heteroscedastic-consistent standard errors are used) in the spot-return 
equations, and only a few are even marginally significant in the forward-return regres- 
sions. The F-statistics for the regressions are invariably insignificant. 

14. The hf t- and hs t-l terms characterize the persistence of the effects of these 
innovations. 
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TABLE 4 Spot and Forward Return Volatility Model Estimates 

Model: hs,t = Ws + 81hs,t_1 + 82Et 1 + 83 t-l 

hf, = Wf + ')1hf,t1 + '12 1t-1 + 4)3z t_1 

Cs,f,t = p(hst, hft) 5 + Ozt1 

Metal 

AL CU PB ZN AG 

W S .000012 .000013 .000046 .000026 .000035 
(5.27) (4.11) (4.35) (4.72) (6.40) 

81 .7953 .8152 .6541 .7108 .8540 
(31.37) (31.63) (10.24) (16.98) (46.55) 

82 .07630 .08574 .06505 .08291 .2597 
(4.67) (5.09) (3.88) (4.60) (9.96) 

83 .01720 .007016 .01359 .01024 - .000113 
(5.12) (4.51) (4.37) (4.73) (- 1.43) 

WF .000008 .000002 .000028 .000014 .000036 
(4.85) (3.91) (4.11) (4.35) (6.27) 

.8394 .8786 .7322 .7892 .8502 
(39.21) (44.48) (13.43) (23.03) (45.07) 

' 2 ..06608 .06380 .06619 .07816 .2645 
(4.96) (4.99) (4.02) (5.13) (10.00) 

'?3 .006235 .002384 .003855 .003098 - .000156 
(4.54) (4.04) (3.65) (3.89) (- 1.66) 

p .9888 .9850 .9907 .9569 .997 
(614.39) (436.32) (579.40) (193.28) (175.69) 

0 - .005747 - .003174 - .004300 - .003130 .00130 
(-9.76) (- 10.12) (- 10.52) (-7.19) (1.50) 

0 .2264 .2131 .2561 .2140 .4330 
(13.45) (13.07) (12.25) (11.36) (50.06) 

Log L 8,858.69 10,379.43 10,392.49 10,310.33 12,532.60 
N 1,267 1,517 1,517 1,517 1,517 

NOTE.-This table reports the maximum likelihood estimate of the variance and covariance model 
parameters. The row labeled "Log L" reports value of the log likelihood. The row labeled "N" 
provides sample size. t-statistics are in parentheses. The variable hSP is the conditional spot-return 
variance at t; hf, is the conditional forward-return variance at t; E,-1 is the squared residual spot 
return at t - 1; 2_, is the squared residual forward return at t - 1; z2_1 is the squared-adjusted 
spread at t - 1. Metals are abbreviated as in table 2. 

spot and forward volatility. This is again consistent with the theory of 
storage, and it implies that fundamental factors are important determi- 
nants of spot and forward price volatility. 

Indeed, these figures tend to understate the importance of spreads 
in determining volatility innovations, because squared spreads are 
strongly and positively correlated with x,(, *) and Xf(, ) for all metals. 
The correlations between z2_I and x,(, ) range between .22 and .29, 
whereas the correlations between zt2_I and Xf(, ) lie between .33 and 
.52. Not surprisingly, then, there are also positive correlations between 
x,(, *) and hS,t (ranging between .15 and .28) and between xf(-, ) and 
hf,, (ranging between .13 and .26). Thus, spreads explain a larger frac- 
tion of volatility innovations when spreads and volatility are large than 
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when they are small. Put another way, spreads are an even more im- 
portant determinant of spot and forward return variance innovations 
when returns are particularly volatile. 

The correlations between z,2_ and hS,, and hf,, are alternative mea- 
sures of the closeness of the relation between spread and price volatil- 
ity. The correlation between the lagged-squared-adjusted spread and 
spot volatility equals .92 for aluminum, .90 for copper, .96 for lead, 
and .75 for zinc. The correlations between the lagged-squared-adjusted 
spread and forward volatility equals .89 for aluminum, .82 for copper, 
.92 for lead, and .60 for zinc. These correlations are considerably 
higher than the correlations between the squared-lagged residual and 
conditional spot- and forward-return variances, which range between 
.35 and .45. Thus, spot- and forward-return conditional volatilities vary 
more closely with t2_ Ithan with the other source of volatility innova- 
tions. 

The estimates of the conditional volatilities, hs, and hf,t, also permit 
a direct test of Samuelson's (1965) hypothesis that spot returns are 
more volatile than forward returns. In the industrial metals samples, 
the fitted values for hs, almost always exceed those for hft. For alumi- 
num, hs,t > hf, for 1,208 of the 1,267 observations, whereas the aver- 
age of hft/hs,t equals .73. For copper, the ratio is less than one for 
1,516 of the 1,517 observations, and its average value equals .68. For 
lead, the ratio is less than one for 1,515 of the 1,517 observations and 
has an average value of .66. Finally, for zinc, the ratio is less than one 
for 1,492 of the 1,517 observations and averages .68. These results 
are consistent with Samuelson's hypothesis. Moreover, the ratio of 
forward- to spot-return volatilities varies inversely with the lagged- 
squared-adjusted spread. The correlation between z,2_, and hf,h,lh 
equals - .49 for aluminum, - .54 for copper, -.61 for lead, and -.52 
for zinc. Thus, as theory predicts, spot-return volatility rises relative 
to forward-return volatility as the market becomes more inverted (i.e.,, 
as zt2_1 becomes larger). 

Figures 5-8 illustrate these various results clearly. The figures plot 
- .05z,2_ rather than ,2_ Iin order to improve their clarity and scaling. 
The relation between the spread and conditional volatilities is clear in 
these figures; spot- and forward-return volatilities peak and trough 
simultaneously with t_1. 

These pictures give striking visual evidence of the extremely close 
relation between volatility and spreads. They also reveal that the con- 
ditional spot volatility almost always exceeds the conditional forward 
volatility, and this difference is most pronounced when the squared 
spread is large. Combined with the quantitative results, they provide 
clear evidence of the primacy of fundamentals in determining price 
volatility, since the return variances behave exactly as the fundamen- 
tals-based theory of storage implies. 
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FIG. 5.-Aluminum spot and forward volatility, and the squared-adjusted 
spread. 
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FIG. 6.-Copper spot and forward volatility, and the squared-adjusted 
spread. 
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FIG. 7.-Lead spot and forward volatility, and the squared-adjusted spread 
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FIG. 8.-Zinc spot and forward volatility, and the squared-adjusted spread 
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The results in table 4 also reveal that 0 < 0 for all metals. Recall 
that 

Os,f,t = P h,i7hf,t + OZ1z 

Thus, defining P*f,t as the conditional correlation between A ln Ft and 
A ln St, 

Pfi,t = p + t(10) P SJ,t 
V~hs, t hf, t'(0 

Note that zt2_ affects the conditional correlation between the spot and 
forward returns through both the numerator and the denominator of 
the final term of equation (9); the overall effect of the lagged-squared- 
adjusted spread on the contemporaneous correlation between spot and 
forward returns is therefore ambiguous a priori. In our sample, how- 
ever, increasing the squared spread systematically reduces this corre- 
lation. Specifically, the correlation between P*f,t and zt2-1 equals - .55 
for aluminum, -.64 for copper, -.79 for lead, and -.87 for zinc. 
Thus, as expected, correlations between spot and forward returns de- 
cline when adjusted spreads widen. It is also of interest to note that 
the estimates of p are very close to one, ranging between .9659 (zinc) 
and .9907 (lead). Taken together, these results are consistent with the 
theory of storage. When spreads are zero, spot and forward returns 
are nearly perfectly correlated, because the ability to execute cash- 
and-carry and reverse cash-and-carry arbitrage ensures that spot and 
futures prices move nearly in lockstep. These correlations decline sys- 
tematically, however, as spreads widen. This result obtains because 
when stocks are low, the arbitrage link between spot and forward 
prices is attenuated, and they vary more independently. 

The results for the relation between volatilities, covariances, and 
the level of the spreads have implications for the dynamic properties 
of Vt. The theory of storage predicts a positive correlation between 
h and z2_, and this is indeed observed. This correlation equals 
.99, .96, .99, and .84 for aluminum, copper, lead, and zinc, respec- 
tively. Our results also produce the predicted relation between the 
forward price elasticity, et, and zt _1. Note that et = os,ftlhSt = 

P*J t thst77. Since both the volatility ratio and the correlation are 
approximately one when z2_ = 0, et = 1 in this case as well. More- 
over, since the correlation and volatility ratio both fall as zt _, in- 
creases, the elasticity also falls, as the French (1986) model predicts. 

Finally, our estimates imply that there are significant variations in 
the variance-minimizing hedge ratio, H. For aluminum, H varies be- 
tween .91 and 1.72; for copper, it lies between .97 and 1.82; for lead, 
it is bounded by .92 and 1.60; while for zinc, it varies between .80 and 
2.10. Moreover, there is a strong positive correlation between H and 
zt _1. This correlation equals .43 for aluminum, .39 for copper, .49 for 
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lead, and .41 for zinc. Those who use forward contracts to hedge 
short-term changes in the value of metals inventory should therefore 
alter their hedge ratios as spreads change."5 

D. Results and Interpretations: Silver 

The results for silver reported in table 4 support the conclusions de- 
rived from the preliminary data analysis. The squared-adjusted spread 
coefficient is negative and not statistically significant in the spot and 
forward return equations; according to the theory of storage, this coef- 
ficient should be positive. Moreover, the spread does not have a statis- 
tically significant effect on the correlation between spot and forward 
returns and again is of the wrong sign. The conditional volatilities of 
spot and forward returns are nearly equal throughout the sample; the 
average value of hf tlhs t equals .994. Finally, the forward price elastic- 
ity is very close to 1.00 throughout the sample. 

These results differ strikingly from those found for the industrial 
metals. This differential performance provides additional support for 
the theory of storage. Agents hold large inventories of this precious 
metal as a store of value. The theory predicts that as a result of these 
large buffer stocks, the spread should be small and vary little. More- 
over, since stock outs and convenience considerations are largely irrel- 
eva-nt for silver, the spread should have little power to explain the 
behavior of silver prices. Thus, the striking differences observed be- 
tween the behavior of silver prices and industrial metals prices are 
exactly as the theory predicts. 

IV. Summary and Conclusions 

This article exploits several implications of the theory of storage in 
order to quantify the role of supply and demand fundamentals in de- 
termining metal price volatility. Several of these implications of this 
theory have not been tested previously, and our methods allow far 
more powerful tests of some previously explored implications. 

The results for industrial metals provide clear support for the theory 
and are thus consistent with the hypothesis that spot-and-forward- 
return dynamics are strongly related to variations in fundamental sup- 
ply and demand conditions. As predicted, (1) spot-return volatility 
varies directly with the square of the spread; (2) forward-return volatil- 
ity varies directly with the square of the spread, but not by as much 
as spot-return volatility; (3) forward returns are less volatile than spot 
returns; (4) the volatility of forward returns declines relative to the 
volatility of spot returns as the square of the interest and storage ad- 

15. The hedge ratio depends on the horizon of the hedge. For a 3-month horizon, the 
hedge ratio is, of course, equal to one regardless of the relation between the spread and 
daily variances and covariances. Thus, the importance of the spread in determining the 
hedge ratio declines as the hedging horizon increases. 
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justed spread increases; (5) correlations between spot and forward 
returns vary inversely with the square of the spread; (6) the volatility 
of the changes in the forward-spot logarithmic price spread varies di- 
rectly with the square of the level of this spread; (7) forward price 
elasticities increase as the adjusted spread narrows and are approxi- 
mately equal to one when the market is at full carry; and (8) hedge 
ratios vary directly with the squared spread. 

In contrast, the adjusted spread does not explain the dynamics of 
silver prices. This finding strengthens the conclusion that fundamentals 
drive metal price dynamics. Marginal storers hold silver as a store 
of value, rather than to smooth consumption and production of the 
commodity over time (as is the case for industrial metals). Therefore, 
one would expect the adjusted spread to be small and nearly invariant. 
As a result, it should not be an important determinant of the dynamics 
of silver prices. The data support these predictions. This finding dem- 
onstrates that the industrial metal results are not attributable to mis- 
specification or statistical error or to some difference in the way "ani- 
mal spirits" affect spot and futures prices. Thus, the results for silver 
make the argument for fundamentals even more compelling. 

These results do more than simply provide support for the theory 
of storage or show that spot-and-forward-return volatilities depend on 
the interest and storage adjusted spread. They also demonstrate that, 
for the industrial metals in the sample period, variations in this spread 
explain most of the innovations in spot-and-forward-return variances 
and that the contribution of the spread to volatility is even larger when 
volatility is high. Since it is well known that spreads vary systemati- 
cally with market fundamentals (which include stocks relative to de- 
mand and the elasticity of supply), these results strongly suggest that 
variations in market fundamentals explain a large proportion of volatil- 
ity changes. 

This conclusion is strengthened when one recognizes that the other 
source of volatility innovations in our model, lagged-return shocks, 
may also reflect the arrival of information related to fundamental de- 
mand and supply conditions. Thus, our findings suggest that, at least 
for the industrial metals, variations in volatility are largely attributable 
to variations in fundamental demand and supply conditions rather than 
to speculative noise trading. 
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